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Abstract. A slice theoremfor theaction of Diff on thespaceof solutionsof the
Einsteinequationsin theasymptoticallyflat caseis proved

1. INTRODUCTION

This is the first of two papers aimed at analyzingthe ADM momentumfor

GeneralRelativity in terms of symplectic geometry, momentummappingsand

reduction, and carrying the work of Regge and Teitelboim [37) to its logical
conclusion.This part discussesthe proof of the slice theoremfor the action of
the group of diffeomorphismsasymptotic to Poincarétransformationson the
set of asymptoticallyflat solutions(in thesenseof spatialinfinity) of the Einstein
equations.The proof is in the context of spatial infinity and maximal slicings.

Eventually,one hopesto extendthis type of analysisalso to null infinity and
constantmeancurvatureslicings.
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1.1. Reductionof dynamicalsystems

The conceptualbackgroundof this work is as follows. Let (F, w) be a sym-

plectic manifold and let the Lie group G act on F. Assumethat the actionof G
on M admitsa momentummapping,i.e. a mapJ : P —~g*, whereg* is the dual of

the Lie algebraof G, such that <J, ~ > is the Hamilotnian function generating

the action on M correspondingto ~ E g. The following is known (undercertain
technicalconditions):

Level Sets

The space.j’(E) is a manifold exceptat points wherethe action of G has a

nontrivial isotropygroup,whereat mostquadraticsingularitiesoccur.

Reduction

The spaceJ1(~)/Gfis a stratifiedsymplecticmanifold with at mostquadratic

singularities,the spaceof dynamicaldegreesof freedom. Here, G~denotesthe
isotropygroupof ~w.r.t. the coadjointactionof G on g*

Forinformation aboutthe generalsituation,see[2].

1.2. The SpatiallyCompactCase

The aboveprogrammehasbeencarriedoutfor generalrelativity in the spatially
compactcase.Let V = M x R whereM is somecompact,orientable3-dimensional

manifold and let M denotethe spaceof Riemannianmetrics on ill. Let g be a
Lorentz-metricon V satisfyingEin(g) = 0. The group in this case is Diff(V),
the group of diffeomorphismsof V and the momentummap is the ADM super-
momentumandsuper-l--lamiltoniari:

= (H, J): T*M -÷A~x A~~=<<dual ofspaceof LapsesandShifts>.

Here,A~and A~,denote the spacesof function densitiesand 1-form densitieson

M, respectively.The spaceof solutions to Einsteinsequationsis fibered over
~_1(O) which is smoothat (‘y, 7r) if and only if the initial data(‘y, 7r) corresponds

to a solution g which has no Killing-field. The reducedspace ~‘(0)/Diff~ of
<<true dynamicaldegreesof freedom>>has been constructed[28] and turns out to
be a stratifiedsymplecticILH manifold.

It shouldbe notedthat in the case of generalrelativity, the action of Diff(V)
on the constraint set C is not a true groupaction. In fact, the Poissonbrackets
of the constraintsare of the form

{~(-y,ir)(x), cI~(~y,7r)(x’)}= C~~(y,ir)6~(x,x’),

usingphysics notation. See [39, p. 545] for the exact expression.The important
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fact to note is that the estructurefunctions>>C0(’y, ir) are indeedfunctionsand
not constantsas is thecasein ordinarygaugetheoriessuchasYang-Mills.

it is thereforenecessaryto check some of the statementsabout symplectic

structureon the reducedspaceetc. <<by hand>>,see[24] for a discussionin the

spatiallycompactcase.

1.3. The asymptotically flat case

Here, the appropriategroup is the group of those diffeomorphisms which
preservethe conditionsfor asymptoticflatness. The natureof the gaugegroup

in the spatial infinity casedependsstrongly on the preciseasymptoticconditions
used.

Apart from the compactification schemesof Ashtekar-Hansenand Geroch
amongothers,threemain typesof asymptoticconditionshavebeenstudied:the
finite energy condition [35], the York Quasi Isotropic gaugeconditions [43]
andconditionsof thetypeintroducedby ReggeandTeitelboim[37].

Theseturn out to have quite different properties.For the finite energycon-
dition, one finds that the groupwhich leavesthe asymptoticconditionsinvariant

is a semidirect productS ~xL whereS consistsof diffeomorphismss~such that
roughly D

2~ E L2, whichmeansthatS containstranslationsandtime translations
(i.e. (N, X)-÷constant).Undertheseconditions,it doesnot appearto bepossible

to talk about Hamiltonian dynamics.For a generalelementof Lie(S IXL), the
correspondingmomentum integral doesnot converge,although for the special
case of translationsandtime translations,the ADM-momentumis well defined.

The York QI gaugeconditionas formulatedin [43] has the desirable feature
that no <<supertranslations>>are allowed, but a more detailedanalysisrevealsthat

without extra conditions, the transformationscorrespondingto boostsare not
well-behaved.In any case,the QI asymptoticconditionsdo not give a well-defined
angularand boost momentumand therefore are suitable only for the study of

diffeomorphismsasymptoticto translationsandtime translations.
To allow a study of the questionof momentumw.r.t. rotations andboosts,

we introducein §3 a set of conditionswhich are a combinationof thoseintro-
ducedin [37] and the QI conditionsof York. Conditionsof thetype introduced
in [37] were recentlystudiedby Beig and0-Murchadha[10] and were by them
termed<<parity conditions>>which is the namethatwill be usedhere.

The spaceof transformationsDiff~ which leavesinvariant the spaceof solu-
tions to the Einstein equationssatisfying the parity conditionsis a semidirect

productDiff~ Diff~D(P, whereF denotesthePoincarégroupandDiff
5 denotes

the spaceof diffeomorphismswhich are asymptoticto supertranslations,which

in this caseare 0(1) with odd leadingterm.
When the QI conditions are added,the Duff5 part is restrictedto Diff1, the
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spaceof diffeomorphismswhich tend to the identity at x = 0~~For details,see

§2. In the following discussion, we will often assumethat the Qi conditions
hold, althoughmany of the statementsare correctwithout this condition.

1.4. The MomentumMapping for General Relativity

In the spatially compactcase, Z is the momentum-mappingfor the action of

Diff on the phasespace of General Relativity. As pointed out by Regge and
Teitelboim [37], this is no longer true in the noncompactcase for Lapse and
Shift not tending to 0 at infinity. It can be shown that whenusingthe parity

conditions,the Lapsesand Shifts correspondingto the groupof supertranslations
S have zero momenta.Thus, assumingthe QI conditions,we seethe ADM mo-

mentumappearingas the momentum-mappingw.r.t. the 2:ndcomponentof the

semidirectproductDiff1 ixP.

Note that from this point of view, the classicalform of the ADM-mornentum
is correct only using restrictive assumptions,such as those in [37], which are

nontrivial restrictionsnot only on the gaugefreedom butalso on the degreesof
dynamical freedomof the gravitationalfield. Call the total momentummapping

= c1 + E. Then
4~E: T*M -+ (A~x A~,)x p” where A~x A~,is the 3 + I

version of the dual of the Lie algebraof Diff
1 andp” is the dual of the Lie algebra

p of the Poincarégroup.E will consistof certainintegralsover spheresat infinity.
From the generaltheory [2], one expectsthe whole programmescetchedin § 1.1

(level-sets,reduction) to apply to For example,one expectsthat (assuming
the QI conditions)

cI~~(0)/Diff~

is a symplecticmanifold (no isometriescan be in Diff1) and that for ~ E p’~’,the

spaces4~’(0x ~)and

x ~)/Diff~,

are manifolds except at points correspondingto flat spaceor spaceswith rota-
tional symmetries.Here,Diff~ = Diff1 ixF~,whereP~denotesthe isotropygroup
of ~ in P. Note here that F~(0x E) is a smoothvariety in a HS setting, but to
constructa C°~structureon 4~.1(0x ~)/Diff~, we have to use ILH structures.

1.5. Discussionof Reductionof EinsteinsEquations

Reduction of a systemwith gaugedegreesof freedommay be performedeither
by explicitly introducing a <<gauge-fixing>>, i.e. introducing a slice and changing

the Hamiltonianso that the dynamicsstaysin the slice or,by what maybetermed
<<intrinsic reduction>> where one passesto the group theoreticalquotientof the
(constrained)phasespaceby the action of the gaugegroup. This method,which
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was introducedby J.E. MarsdenandA. Weinstein[31] is applicableunderquite

generalconditions,but doesnot give anexplicit set of <<reducedvariables>>,which

are usefulin calculations.
No satisfactorysolution to the problem of constructingreducedvariablesfor

G.R. has been found, except in the spatially compactcaseof systemswith one

spatial Killing field in the work of V. Moncrieff [32]. This is one of the important
openproblemsin G.R.

in this paper we will be concernedwith the intrinsic reductionof Einsteins
equationsin the asymptoticallyflat case,which doesnot appearto havebeen

carried out in detail before, although the problemhas beendiscussedin various
contexts [28], [16, § 10]. To give a backgroundto the problem we will here
discussthe approachesto the questionof reductionof Einsteinsequationswhich

havebeenmadeearlier.
P.A.M. Dirac introduceda generalmethodfor computingthe <<reducedHamil-

tonian>> and applied it to General Relativity in [22]. Dirac noted that the
Hamiltonian constraint may be effectively reducedby separatingthe variables

into a conformalmetric ~(det ~ 1), a conformalfactor ~, a conformallyrescaled
trace free part of the momentum~ andtrK, the traceof the 2:nd fundamental
form of the 3-surfaceM. Here,trK playstherole of timevariableand~ plays the

role of Hamiltonian, dual to trK. This ideahas beenextensivelydiscussedand
generalizedin a seriesof papersby J. York (see [34] and referencestherein).

Shortly afterthe EinsteinEquationswere put on Hamiltonianform by Dirac,
the reductionproblem was takenup by Arnowitt, DeserandMisner (ADM) who

in a seriesof papers (see [3] and referencestherein)discussedthe Hamiltonian
form andreductionof the Einsteinequations.The Hamiltonianform introduced

by Dirac was refined and the Hamiltonianversion of the Hilbert Lagrangianwas
derived.

The generalmethodappliedby ADM was first introducedby J. Schwingerin

a Quantum Field Theory context and is known as the Schwingervariational
principle. In the work of ADM, a set of variables ~‘~7T’ ir~.)were introduced
which serve as dynamical degreesof freedom.Theseare defined in terms of a

decompositionof (‘y, ir) w.r.t. a fixed flat backgroundmetric, which makes
the procedurenon-covariant.The decompositionintroducedby ADM hasbeen

further studied in the work of Deser [21] and York [42]. Although a great
dealof insight into the structureof the constraintequationshasbeenderivedin
the courseof theseinvestigations,no generalsolution to the reductionproblem
hasbeenachieved.

Finally, the possibility of performing a manifestly <<covariant>> reduction

(without 3 + 1 -ing the equations)is indicatedby the work on covariant brackets
by Marsdenet. al. [30]. Onemight also mention the approachto the Yang-Mills
equationstaken by Gross [26], which if it generalizesto the case of General
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Relativity (as indicated by the work of Mandelstam[29]) may give some new
insightinto the problem.

1.6. Statementof the Slice Theorem

Let G denoteDiff~1 or Djff~1, let A : G x Ein~1(V) -+ Ein~.3~‘(V) denote
the action (by pullback) on the space of solutions of the Einsteinequations
satisfyingthe parity and QI conditionsandfor l~ 1, let 0~(g)=A(G, g) denote

the orbit of g E Ein~‘(V) underthe actionof Diff~or Diff
1.

The statementof the slice theoremfor the action of G on EinQJ(V)S is as
follows (cf. [28, Theorem4.1] for the spatiallycompactcase).

THEOREM 1.1. Thefollowingholdsfor g0 E Ein~j
1(V).

a) The orbit 0~~g
0)is a closedC

1 embeddedsubmanifoldof the manifold
Ein~

1(V).

b) Thereexistsa submanifold5 containingg0 which is a slicefor theaction

(for the details of the definition of a slice,see [I, Definition 4.1], [28, Theorem
4.1]) or AppendixB. a

Remark. We will provethe theoremassumingthe validity of the conjectureson

global existenceof solutionsandmaximal slicings. It is clearly possibleto formu-
late <<local>> (in time) slice theoremssimilar to thosein [28], which are valid under

weakerassumptionson the existenceof maximal slicings, but we will not pursue
thishere.

The action of the group of asymptoticallyEudideandiffeomorphismson the

space of asymptoticallyEuclideanmetrics on R” was analyzedby the author
[I] andplaysan importantrole in the proofof Theorem1.

The notation which will be usedin the following is fairly standardandfollows

[28]. To make the presentationin the main part of the papermore coincise,
some technical details have beendeferred to two appendices.In Appendix A,

some details of analysison spacesof radially smooth functions is given and in
AppendixB, some backgroundto the slice theoremfor theasymptoticallyeucli-
deancasewith radial smoothnessis given.

The authoris grateful to Jerry Marsdenfor suggestingthe problemwhich led

to this work and for hishospitalityduringa stay in Berkeley,wherethe work was
started. Many thanks to R.K. Sachsfor patiently answeringa numberof naive
questionson this subject.

2. THE PARITY CONDITIONS

In order to formulate the asymptoticconditionswhich will be used in this
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paper, we introduce some spacesof functions with radial smoothness.Let H

denotethe weightedL
2 Sobolevspacewith norm . tL~(see [17] for definition).

On IR”, let x = (x
1 x~)be a set of Cartesiancoordmates,w.r.t. a flat metric

e. Let the angularvariable 0 be definedby 0 = x/r wherer = x lie is theradius.

DEFINiTION 2.1. We will denote by RT,~the spaceof functions of the form

4(0)
f(x)= rk +f(k+fl,

wherefk E H
2~s(Sn)and f(k÷1) E H~(IR”)where6 = e + k — n/2 for some

� E 10,1 [. We will takee to be fixedandleaveout referenceto it in our notation.
If fk hasevenor odd parity, then we saythatf E Rr~e andRT~Qrespectively.

Further,if fk satisfiesfs”fk(0) dO = 0, i.e.fk is orthogonalto constants,thenwe
say thatfERT

1.

Wedefinea norm on theRT spacesasfollows:

ç2 — c 2 c 2
I k,s — 1k s + ~(k+1) s,i~

We will usethe notation f(/) to indicatetermsof order~‘ fin 1/r.

Remark. Clearly, onecould defineanalogousfunctionspaceswith arbitraryorder
of radial smoothness.However,this will not be usedin this paper,although the

study of Einsteinsequationsunderstrongerassumptionson radial smoothnessis

an interestingproblemin its own right, seeeg. [9]. ReggeandTeitelboimassumed
two degreesof radial smoothness.Thisassumptionhasno importantconsequences

for the problemstudiedin this paper,but the expressionfor the boostmomentum
derived in [10] (which involves dN) is more complicatedthan the one derived
in [371which hasthe sameform as the ADM massformula.

The abovenorm makesthe spacesRT~(1R”)into Hilbert spaces.Thechoice of

� given above is importantto makesure that solutions to elliptic systemsof

equationsstay in the sameclass of spaces.The resultson elliptic operatorsacting
betweentheH~spacescarry over to the RT spaceswithout difficulty, although

some care has to be taken due to the fact that in general,logarithmic terms
appearin the solutions to Poisson’sequation.Theseproblemsare eliminated by

imposingthe parity conditionsdefinedbelow.
LetM be a C~manifold,diffeomorphic to JR’

1.
DEFINiTION 22. Let e be a given Euclideanmetric on M andlet r : M -+ JR be
definedby r(x) x — x

0 for somex0EM andfor someR E IR, let ~1’ ~2 bea
partition of unity such that 01(x) = 1 if r(x) ~ R and 02(x) = I if r(x)~2R. A
Riemannianmetric g on M is saidto beradiallysmoothof order (k, m, s) if there

is anR E JRsuchthat

1) ~1gEIP(S
2T*M).
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2) O
2(g_e)ERT~(S

2T*M).

Thespaceof radially smoothmetrics of order (k, s) on M is denotedby M~.The

spaceof metrics with evenor odd parity is denotedin the naturalway. a

Remark. The spacesM~and M~eare smooth Hubert manifolds. The inverse

limits as s—~ oo are strongILH manifoldsin the senseof Omori [36]. a

Thespacesof initial datastudiedin [10] canbe defmedas follows:

DEFINITION 23. (The Parity Conditions). We will let T*MRT be given by the
set of (‘y, ir) suchthat

and

7T ERT~1(S2TM)

where s > n/2 + 2. This meansthat ~ = c ~ + ~2) where ~ is evenand

~(2) E for 6 E ]— ~, ~ [. Similarly, ~ = + ~(2) where~ is odd and

~.(2)EH
6S~1.

The correspondingconcept in a four dimensionalsetting is the following:
Let g E Lors(V). Then we say that g E Lor~T(V)if thereexists a slicing i : JR x
x M —~ V suchthat the induceddata(‘~, irk) E T*M~Tfor eachXE JR. a

See Appendix A for some remarkson analysisunderthe aboveassumptions.

Remark. (I) In the analysisDiff1 below one is lead to study the operatorsL~L~
and L~K7 acting between and H~

1
1.The choice of 6 in Definition 2.3

meansthat the operatorsact as isomorphisms.See Appendix A for a discussion

of relatedquestions.

(2) In [18] a version of the H~spacesis usedwhich is basedon a Lorenz

signature metric, with r replaced by a radial measurep defined by p
2(x)

= ii(x, x) where~ denotesthe Minkowski metric on 1R4. Further,in [9], radial
smoothnesswas defined directly in termsof 4-dimensionalobjects,again w.r.t.

a radial distancep. The definitions usedin this paper, basedon a 3 + 1 setting
areeasilyseento correspondto definitions using the abovementionedconcepts.

U

We define the groupDiff~~to be the group of all diffeornorphismsof V

which leave the set Lor~Tinvariant. The following result can be found in [37,
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Appendix A] andwith moredetail in [10, §3].

LEMMA 2.1. The groupDiffRT is a semidirectproduct DiffRT = Diff~rxPwhere
P is the Poincaré group and LieD,ff correspondsto lapsesand shifts satisfying

(N, X) E RT~0x RT~0(TM).Furr)~er,Diff~is a normalsubgroupofDiff~and
there is a distinguishedsubgroupP = DiffRT/Diffs. a

Remark. The group Diff~containsno isometries. In fact, if g is not flat, then
the only isometriesof g underthe presentconditionsare rotationalsymmetries
andhencespatial transformations. a

2.1. The York Quasi-Isotropic Gauge

The existenceof supertranslationsat null infinity I was first pointed out in
the work of Bondiet. al. The existenceof supertranslationsalso at spatial infinity
(Spi) was pointed out by Bergmann[II] who presentedan argumentclaiming

to show that it is impossibleto remedy the situation by (<reducing>> w.r.t. the
supertranslationpart of the gauge group. The concept of supertranslationsat
Spi has surfacedin a number of papers dealingwith compactificationschemes

to analyzethe asymptoticstructureof the gravitationalfield [25], [6].
In the paper [6], A. AshtekarandR.O. Hansenintroduceda methodfor fixing

the gaugefreedomw.r.t. supertranslations.Thebasicrequirementin this scheme
is the vanishingof the limit atSpiof the magneticpartB of theWeyl tensor.It is
also possible to formulate this condition in a 3 + 1-frameworkin termsof a

condition on the radial-angularpart of the Ricci curvaturetensorof the 3-metric

g [7] (seealso [44, p. 56]).

An approachto this question,which madeuse of the differencein the dyna-

mical structureat Spi from that at I was presentedby Arnowitt [4]. The central
idea here was the concept of <<wave-front>>, i.e. that due to the finitenessof
energy, it is possibleto separatethe dynamical partsof the field from thegauge
parts nearinfinity, and thus, by a changeof coordinates,<<improve>) a given set
of initial data in order to satisfy strongerconditions allowing for well-defined

angularmomentum.This idea was takenup by J. York [43], who introducedthe

conditionswhich will be definedbelow.
We will here formulate the conditions correspondingto the Quasi Isotropic

(QI) gaugecondition of York for theRT spacesof initial dataintroducedabove,

satisfying not only asymptotic flatness in terms of H~spacesbut also radial
smoothnessand parity conditions. Enforcing the QI conditionswill allow us to

fix a <<frame at infinity>>, which will simplify the proof of the slice theorem.

Further, using the QI condition with the parity conditions in force makes it

possible to control the ADM momentum w.r.t. the Lie algebra of the
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correspondinggaugegroup, something which does not appearto be possible

using only finite energy conditions. Finally, the extra condition on the decay
of tr7r is natural for proving the existenceof maximal slicings (see §2.3 below).

DEFINiTION 2.4. (Quasi-IsotropicGauge):Let e bea given flat metric on M and for

a two tensorw, let ~ denotethetracefree part of w w.r.t. e,i.e. i~ w —i. etrew.
Let H be the spaceof lowerorderpartsof the elements‘I’ E MRT.

(1) We define the spaceT*MQJ of initial datasatisfying the Quasi-Isotropic
gaugecondition to be the set of (‘y, it) E T*MRT such that

E H~÷1
1

whereh = — e and

treir EH~÷’1

(2) Let g be a Lorenz metric on V. Then we say that g is QI asymptotically

flat if thereis a slicing i : M x IR -~ V suchthat the induceddata satisfypart (I).
The space of QI asymptoticallyflat Lorenz metrics in Lor~Twill be denoted

by Lor~1and the spaceof slicings i : M x JR ~ V will be denotedby ~ a

To clarify this notion we makea few remarks.First, note that for a given
flat metric e on M, thereare other flat metricsin the sameRT-classas e, which

are not in M~.Further,having chosene E MRT, we could use any ‘y E M~
insteadof e in the definition. The QI conditionshould be viewed as a slice con-

dition which fixes part of the gaugefreedomat infinity. To seewhatthis means,
let h E TeMRT and considerthe York decompositionof h w.r.t. e (see [43] or

AppendixA.3 for notation):

h = h~.+ hT + Le(W).

Then, the QI condition becomes E H~
1

1,i.e. the only constraintis on
the longitudinal part Le(W) of h. In general,for h E T7MRT, W = 0(1) + ~
Thus,what the condition statesis that the 0(1) partof W vanishes.Similarly, the
QI condition forces the 0(1/r

2) part of it
2. to vanish. Here itT denotesthe trace

part of it in the decompositionit = ir~.+ it2. + Le(Y).
In the paper [4] it was claimed that given <<general>>initial data with finite

energy,it is possibleto find a coordinatesystemin which theinitial datasatisfies
conditionsof the type given by Definition 2.4. This will not be doneherebut it

should not be difficult to prove the existenceof QI coordinates for general
asymptotically flat metrics using techniquessimilar to thoseused in proving the

existenceof harmoniccoordinatesnearinfinity, seeeg. [35].
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Remark(LinearizationStability). ThespaceT*M~Jwill bethe phasespaceforGR
in therestof this work and the constraintset C& = {(‘y, it) E T*M~J ‘I(’~’, it) = 0)

will be used to describe the set of asymptotically flat solutionsof Einsteins
equations. The well known fact that T*MS is a smoothmanifold extendseasily to
the presentsituation and the limit as s ~ oo yieldsan ILH structureon T*M~J.

Similarly, we expect, due to the nonexistenceof Killing fields in LieThff that
C~1should be a smooth manifold. However,in the caseof C~1,the situation is

moresubtle.Theonly proofsof the smoothnessof the constraint set in the asymp-
totically flat case usethe assumptionthat tnt = 0, i.e. the maximal slicing con-

dition (see [16]). Therefore,assumingthe existenceof maximal slices (see §2.3

below), it would be possibleto completethe proof. The asymptoticconditions
usedheredo not changethesituation.

In the paper by Beig and 0-Murchadha[10], there is an argumenttowards

proving the linearizationstability for the constraintequationsfor GR. The basic
idea is to prove that kerD ~ = 0 andthen appealingto the nondegeneracyof

the symplectic form, instead of proving directly that D’F is surjective under
appropriateconditions.

The argumentin [10], seemsto be able to handletrit�rO but to completethe

proof, some further analysisis neededto be ableto appealto theinversefunction
theorem,since the operatorwhich is studied(D~*)is the formal adjoint to the

operatorwhich is of interest (D4). Also, the relation betweenthe rangeof 1

and the domain of definition of D~*is not completelystraightforward,so some
care is requiredto completethe argument.

The following result characterizesthe group of diffeomorphismswhich is
picked out by the QI condition.

THEOREM 2.2. (the group Diff~). Let the spaceEin~1(V)be as above and let

DifJ~1 denote the space of all diffeomorphismsof V which leavesEin~,(V)

invariant. Then

Diff~
1(V) Diff~1

where DifJ~i+I denotes the space of those diffeomorphismscorrespondingto

lapsesandshifts (N, X) satisfying

(N, X)EH~(F x TM)

Proof From Lemma 2.1 recall that the group which leavesthe parity conditions
invariantis of the form
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DiffRr = Diffs ~,

whereDiff~denotesthe diffeomorphismsasymptoticto supertranslations(in the

senseof Regge and Teitelboim). Thus the problem here is to show what the
effect is of imposingthe QI conditions.

Let (‘y, it) E T*MQJ and assume that (N, X) E Lie~ff.By Lemma 2.1 this

meansthat we can write N = N_1 + N(0) andX + X(0), where(N_1,X
correspondsin a unique way to an elementof Lien and (N(0), X(0)) E RT~0x
x RT~Q(TM),i.e. (N(0), X(0)) is an infinitesimal supertranslationin the senseof
Reggeand Teitelboim.

Then assuming~N,X) E Lie Diff~meansthat J 0D~*~N,X) E T(7~)(T*MQJ).
Hence Jo Dc1* denotesthe generatorof the dynamicsof GR in the 3 + 1 picture,

see[28].
Applying Definition 2.4 and using the explicit form of J a D~* gives the

conditionof theform

+

i~7N+6~,(Xnt)EH~1.

Here it denotesthe tracefree part of it w.r.t. e. By the argumentsused to prove
Lemma 2.1 (cf. [37, AppendixA] and [10, §3]) we find by settingX = 0 that

E R7~~and by settingN = 0 that &~(Xir)ERT~’. Further, one sees

that the only part of (N, X) which contributesto the I/r
2-parts is the infinite-

simal Poincarétransformation(N ~,X_ ~
Decomposingthe terms ~L~X E H~1

1and &~Ninto piecescorrespondingto
(N_1, X. i~and lower order parts gives after somerearrangementsthe following

conditionnearinfinity:

(2.1-a) AeN(O) =F2(O)/r
2 + l.o.

(2.1-b) L~LeX(O)= G
2(O)/r

2 + l.o.

The R.H.S. is a function of (N
1, X1) and (-y, it) and is odd. Clearly the equa-

tions (2.1) can be solvednearinfinity to give an expressionfor the 0(1) super-
translationpartof (N, X) in termsof (N1,X_ i~and other data. a

Remark. It should be noted that the finite energy conditions [351 or the con-

ditions used in [18] do not allow a result like Theorem 2.2. Thereforesome
strongercondition like the parity conditionhas to be used as a startingpoint. It
would be interestingto know whetherthe more generalconditions,which still
imply finite angular momentum,introducedby Chruscliiel [20], would allow a

proofof a resultlike the above, a
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2.2. TheFrameat infinity

By a well known construction(see e.g. [9]) it is possible,under the present
asymptoticconditions, to completeV in thespatialdirection by addinga ‘hyper-

boloid at infinity’ H. The space H is isomorphicto the unit hyperboloidH0 in
Minkowski spaceJR

4.
Let denote the spaceof cross sectionsof H, correspondingto the set of

intersectionsof H
0 by spatial hyperplanesin 1R

4, which we denote by E
11.

Denote by ~H the group of automorphismsof ~H inducedby the action of
the PoincarégroupP on 1R

4. We will denoteby [A], the element in cor-
respondingtoA EP.

Thefollowing resultis aneasyconsequenceof theconstructionof H.

LEMMA 2.4. There is a well definedmap of ~QJonto ~, definedby taking
limits as r -~ oe. We denotethe image of i E ~ by [I]. Theaction of Diff~on

V inducesan action on For ~ EDiff~,wedenotethecorresponding element

inP~by [ni]. Further, if ilEDiff
1, then [ii] =idEPH. U

2.3. Maximal Slicings

The generalexistenceof maximal and CMC slicings is still an open question,

and as in the caseof CMC slicings in the spatially compactcase,we will haveto

CONJECTURE (Existence of Maximal Slicings). Let V = 1R
3 x R1 and let g E

E Ein~
1(V).Then, for any slicing i E there existsa uniqueslicing j E

such that [j] = [i] and ;~(M)is a maximal hypersurfaceof (V, g) for each
XE1R. a

The work of Bartnick [8], which proves the existenceof maximal slicings
asymptoticto regular time functions underthe assumptionthat certain bounds

hold in the interior of V, usesasy,mptoticconditionswith tnt = O(~).Therefore,

the QI conditions are natural in this context.

D. Witt [41] recently pointed out the existenceof topological obstructions

to the existence of maximal initial data. The obstructionresults from the fact
that the conditionf~nt= 0 togetherwith the maximal constraintimpliesR(’y) ~‘ 0.
On the other hand, there do exist solutions to the constraint equationsfor

spacelikesliceswith arbitrary topology, both for thecompactandasymptotically
flat cases.

The existenceof topological obstructionshas as a consequencethat a number
of results where the existenceof maximal slicings has beenassumedneednew
proofs for generalspatial topologies.Examplesof this is the proofof smoothness

of the constraintset [16] and the characterizationof the crit~ca1pointsof the
massfunction [151.
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In the casewhereM= 1R3,thenit known [13], [15] that the only critical point
of the mass function is flat space.The fact that the massfunction has a unique

critical point indicatesthat the spaceof solutions to Emsteinsequationsis con-

nectedin the caseM = 1R3, Thisproblemis discussedin the work of 0-Murchadha
[33]. What is lacking for a completeproof is theresultthat the massfunction for
GR has a critical point in every componentof the constraintset,which seemsto
be hardto prove. The connectednessof the solution setwould togetherwith the
stability of maximal hypersurfacesunder deformations [14] imply the global

existenceof maximalhypersurfaces.

2.4. TheIsometry groups

ForgE Lor(V), let denote the groupof isometriesof g. Assumegis not flat

and that g has a time like Killing field. Then, in somerest frame the massis zero

which by the Positive Mass Theoremis a contradiction.This provesthe follow-

ing result.

LEMMA 25. Let g E Ein~
1and assumethat g is not flat. Then g has no time

like killing fields, a

Thus, if g is not flat, any ~?E is spacelikeandit is not hard to seethat this
implies that there is a frame 1 E ~H which is invariant underthe action of [n~].
If we let I denote the maximal slicing correspondingto 1, then the uniquenessof

maximal slicings implies that r~induces a diffeomorphism r~of M such that

a i~ = ° If we let ~ 1r~)denotethe data inducedon M x {t}, we see
that is anisometryof ‘ye.

On the otherhand, if ~i is a timelike isometry, theng is flat by Lemma 2.5

and V is isometric to Minkowsky space.In this casen~correspondsto a timelike
Poincaré transformation, i.e. a combination of timelike translationand boost.

The following result is the asymptoticallyflat versionof [24, Proposition2.3].

THEOREM 2~.(Structureof data for isometrics).Assumethat g E Ein&(V) has
a nontrivial Killing field Z. For a slicing j, let (‘y~,it~) denotethe induceddata
on f~(M)andlet (N, X) denotethe lapseandshift correspondingto Z.

Oneofthefollowingstatementsis true:

1) Z is time like. Then g is flat and V is isometric toMinkowskispace.Hence
there exists a maximalslicing! such that the induceddata ~ it~) is such that

‘y~is .tlat and it~ ~0.
2) Z is spacelike.Let / denotean adaptedmaximalslicingfor Z which exists

by the abovearguments.Then in termsoff, the lapseNvanishesthe data (‘y~,irk)
satisfyL~y~= OandL~it~= Ofor all XE IR. a
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Using the corresponding results for the asymptotically flat Riemannian case
[1, §3], we cannow prove:

PROPOSITION 2.7. if g is not flat, then is a compactLie group, isomorphicto a
subgroupof 0(3), the 3-dimensionalorthogonalgroup, while if g is flat, then
1g = P. the Poincarègroup. The map i : ig ‘+ Diff is an imbedding,the quotient
Diff~/I

5 is a manifold and the map it : Diff -+ Diff/I~ admitssmoothcross

sec(ions. •

3. PROOF OF ThE SLICE THEOREM

In this section,we will give a proof of the slice theorem,Theorem1.1, for the
action of Diff~(V) on the spaceEinQJ(V) of asymptotically flat solutions of
Einsteinsequationssatisfying the QI conditions. This is a generalizationof the
resultsprovedin [28] and[1].

The proof of the slice theoremconsistsof two main steps.The first is dif-
ferential topological in natureand consistsof showing that the orbits are im-

mersedsubmanifoldsandthat a slice existsfor theaction ofDiff~.
The proof that the orbits are immersedsubmanifoldsproceedsexactlyas in

[28, §5]. The central step of the proof hereis usingthe ellipticity of the 3 + 1
form of the mapping X —~ &g(L~g)to imply the closed rangeproperty,which

allows the useof standardtechniquesfrom differential topology.Theconstruction
of the slice is an easyextensionof techniquesusedin [28] and [1] andwill not
be discussedhere.

The secondstep consistsof proving that the orbit O
t(g) is closedin the topo-

logy inducedfrom T*M~J.Here oneuses in the compactcasethe (conjectured)

fact that thereis a globallyunique constantmeancurvature(CMC) slicing for any
g satisfying reasonablehypotheses.The reasonthat the procedureused in [23]
and [1] doesnot work is that the set of ON-framesat a point for a given Loren-
zian metricis noncompact.The existenceand uniquenessof CMC slicingsallows

one to separateout spatial directionsand apply the method for the Riemannian
casethere.

In the noncompactcase there is no uniquenessof CMC slicings. Instead,one
has for a given value r of the meancurvature,existenceand uniquenessresults,

given a <<slicing at infinity>>. In this paperwe are working in a spatial infinity
contextand thereforereplacethe CMC slicingsused in [28] by maximal slicings.

A questionwhich is closely relatedto the globalexistenceof maximalandCMC
slicings and which is still open,is the global existence(in time) of solutionsof
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Einsteins’ equations.The work of Christodoulou and 0-Murchadha [18] shows
quasiglobal existenceand in particular that the maximal developmentof an
asymptotically flat solution of Einsteins’ equationsadmits boosts. This work

was done in terms of weightedSobolev spaces,but carriesover to the present

setting without difficulty. In [19], Christodoulou shows global existencefor
sphericallysymmetricsolutions.

3.1. Proof that orbits are closedsubmanifolds

We will only considerthe caseof Diff~,the case of Diff
1 being similar and

easier. The strategy for the proof that the orbits are closedis the following:

First, we note that underthe QI asymptoticconditionsusedhere,the action of

Diff~induces an action on the set of crosssectionsof spatial infinity, a locally
compactset (this is Lemma 2.4). Next we show that the assumptionof nonzero

mass implies that there is a convergentsubsequencein the sequenceof cross

sections induced by the action of any sequenceof diffeomorphismsi~ such

that i~g0convergesfor someg0 E LorQJ(V). The existenceof a maximal slicing
correspondingto the limiting crosssection enablesus to control the behaviour
of the

Let g0 EEin~1(V)be given. To show that O~g0)is a closedsubsetof Ein~(V),

we proceedas follows. Considera sequence{i~},° C Diff~1 andassumethat
g~ r~g0hasthe propertythat thereexistsa g,,~EEin QJ(V)suchthat

hmg~=g~.

Thenwe will prove

THEOREM 3.1. Thereexistsa i7~EDif/~ 1 such thatg,,, = i~g0. .

Assumethat g0 is not flat. The casewhereg is flat is similar to the correspond-
ing spatiallycompactcaseandis left to the reader.Let i°be a givenslicing of V
suchthat g0 satisfiesthe QI conditionsw.r.t. i

0. Let [i0] denotethe crosssection
of H defined by i0 and let 1,, = [ii~] E~H denotethe correspondingaction of

~ (see§2.2 abovefor theseconcepts).

We will now prove that if g is not flat, then {i~[i°]} hasa convergentsub-

sequence.The following Lemma is a preliminary result which will allow us to

control the behaviourat infinity of ~ The idea of proof is similar to that used

in the proof of the correspondingstatementfor the asymptoticallyEuclidean
casein [1].

LEMMA 3.2. Let r be a radiusfunction determinedby geodesicdistancew.r.t. g
0
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and let p be a luminositydistancein V. Assumethatg0 is notflat. LetpE Vand
letp,~= ~ (p). Thenthesequencesr(p~) and p(p~)are bothbounded.

Proof. Assume that either r(p~)-~ oo or p(p~)-~ 00 as n -+ 00, The asymptotic
flatness of g0 now implies that F(p~)and Vr(pn) tend to 0 as so we canfind
geodesicneighborhoodsU~of p,~which becomearbitrarilylarge asn -+ 00.

Now considerthe sequenceW,~= rç
1(U~)of neighborhoodsof p. From the

abovewe seethat as n -* oo, the neighborhoodsW,~grow to cover V and that by
choosingn largeenoughwe seethat g~is arbitrarily closeto a flat metric on any
compactset. But by assumption,g~-+ g,,, andso we find that g,,, mustbe flat.
Wewill now show that this is a contradiction.

The Positive Mass Theorem [38] tells us that if P~is the ADM momentum

vector, then P(g) > 0 for any g E Ein(V)which is not flat, where denotes
the invariantsemi-normon t’~’,the dual of the spaceof translations,given by the
Minkowski metric. In particular,P,

1(g) = 0 if andonly if g is flat. By the trans-
formation propertiesof P~[37], P�~)I = P(g0) . Further, we know that the
mappingP : Ein(V) -+ t

1’ is continuous,which implies that P(g,,,) = P~g
0)~ 0.

But the argumentaboveshows that r(p~)—~ 00 or p(p~)-÷ oc implies that g,,, is

flat andhenceP(g,,,)= 0, so we havederiveda contradiction, a

The Lemma enablesus to control the behaviour of ~inearinfinity. Let i,~=

= [17fl]EPH as above.

PROPOSITION33. If g is not flat, then thereexistsa i,,, EPn whichis thelimit of

a subsequence{
1k} of{l~}.

Proof Assume~ -~ oo ifl ~H’ First consider the case where the boostpart of
-÷ oo, Then, for p E V which is <<close to infinity>>, l,~ -+ oo meansthat i~(p)

moves to infinity in V approximatelyalonga hyperboloidof r = constant.But
by Lemma 3.2, this contradictsthe assumptionthat g is not flat andwe canthus

assumethat theboostpart of in staysbounded.

In fact, for any frame [i°], we can choosea frame [I] suchthat a subsequence

of [~n I = l~[i°] convergesto pure time translationsof [j], i.e. [i7] -÷ [j~÷ ~] for
somesequence X~}C JR. From now on we assumethat sucha subsequencehas

beenchosen.
Let in be the maximal slicing of g~w.r.t. [i’~] and let/’~be the maximal slicing

of g~w.r.t. [j]. Let the datainducedby in onM x ~t} be denotedby y,, (t), ir~(t).

Similarly, let the data inducedby j’~ be denotedby ~n (t), if,~(t). Thenan argu-
ment similar to the proof of [28, Proposition3.4] shows that thereexistsdif-
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feomorphismsxe,,, E Diff~~M) suchthat ii.” a —~ as n -~ 00. If we fix
t = 0 thenwe canrewritethis as

° ~ ~1~’

~th t~= — X,~andx,, = ~ Furtherwe find that asn -~

(X,~’7n(ta), X~’hmn(tn)) -* (5~(0),i~(0)).

The uniquenessof maximal slicings implies that ~ o = i~°~’~(t)whichmeans

that ‘y.,~(t) ~‘~‘(t)y0(t).After restrictingto t,~we get

° = ito~.n

where we use the notation ~ = ~ (t,~). Thismeansthat -y,~(ç) = ~‘,~‘y0(t~).Thus

wefind that as n -÷

n~~f0(t~) -~ ~0)

where = ~ 0 X)~
Now assumethat tn —~ ±oc. By the time reversability of Einsteinsequations,

we may assumethat t,~ -4 + oo. Consider the sequence~y0(t~).As t -4 00 two
things can happen:either the gravitational energy dispersesto null infinity, in

which case~y0(t~)tendsto a flat metric, or a blackhole forms,in which casethe

curvatureof -y0(t~)grows unbounded.Both of thesepossibilities are ruled out

by the above.
In the first casewefind that‘y (0)mustbe flat. But the choice of 0 as referen-

ce point is arbitrary and henceg,, must be flat. This is a contradictionby the

sameargumentas in the proof of Lemma 3.2. In the secondcasewe find that

y~(0) has unboundedcurvature, which is ruled out by our assumptions.Thus
tn must bebounded.This completestheproof of Proposition3.3. .

In the following we will restrict our attention to a subsequencei~ given by
the Proposition,such that [~] converges.It follows from the Propositionthat

[i~} = ln[1°] convergesto some frame [i~]. By assumption(~2.3)there is a
uniquemaximal slicingj’

m : M x JR -+ V definedby [i~?Iandgn.
Let the data induced by j’~ on M x {t} be denotedby y~(t),T~(t).Then an

argumentsimilar to the proof of [28, Proposition3.4] tells us that thereexists
diffeomorphismsXt,n EDiff~1(M) suchthat

° xt,n ~‘r

and
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(3.1) (x”~’y~(t),~ (t)) ~ (‘y,,,,(t), ir,,,(t)).

Here we use Dif,f~~s+
1(M) to denotethe spatial part of Diff~’‘(V). We cannow

completethe proofin a way analogousto that in [28]. The uniquenessof maximal
slicingsmeansthat if i~is a maximal slicing for g and i~EDif,~~1, thenif/i is a

maximalslicingw.r.t. (~*g,[17*i]) thereexistsa diffeomorphism~‘(t)EDiff~~5~1(M)
such that 77 0 i~.= ~ ~(t). Thus, there existsa sequence~ (t) E Diff~’1(M)
suchthat

(3.2) ‘y~(t)=

for eacht. Now (3.l)and (3.2) givesus

urn fl*(t)7
0(t) =

wherep0(t) : = x~(t)a ~‘~(t)EDif,~’~‘(M). Wecannow apply [1, Theorem3.5]

(see also Appendix B) to show that for eacht E R, the sequence ~~(t) has a
covergentsubsequence.Thus, for every t E IR, we find ~ (t) E Diff~~s+‘(M)

suchthat

rL(t)*_yo(t) =

and the condition

0 = 0 ~ (t)

definesa unique elementof Diff~ 1 such that ~ is a limit of a subsequence

of
The proof that Os(g)is an embeddedsubmanfoldcan now becompletedby a

standardtopologicalargument,see[28, Lemma5.21.

Appendix A: Radial Smoothness

We will recallsomeelementaryfactsaboutfunctionsdefinedin termsof power

series in a radial parameter.On 1R
3, let x = (x

1, x2, x3) be a set of Cartesian
coordinates,w.r.t. a flat metrice. Let the angularvariable0 be definedby 0 = x/r
wherer = II x lIe is theradius.

If we introduce radial coordinates(r, 0) on 1R
3, then the Laplaceoperator

becomes

[~2 2 a 1 1
+— —+—~olLar2 r ar r2 j

Therefore,if f(x) = we have that on 1R~= JR3 — {0}, I~f = _~-~-~-
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(i~ + c~)g(O),whereck k2 — k.

The spaceof solutions to ~ef = 0 on JR3* for f of the form f(x) = is

spannedby elementsof the form ~ and r (k + 1)~k where ~k is a spherical

harmonicof orderk, i.e. a solution to

+ k(k+ 1)~k—0.

See[40, p. 303] or any textbook on PDE in mathematicalphysicsfor details.

This implies in particular that for k E IR, the only solutions on 1R~’to the

equation~ef(x) = are f(x) = for k ~ 2 and k � 3. In the exceptional

caseswe havef(x) = c ln(r) fork = 2 andf(x)=c ~ fork = 3 for some
constantsc.

A.2. Poisson’sEquationwith Radial Smoothness

Recall that if f : 1R3 -+ JR is integrable, then the solution to L\~u= f can be
written as F*f whereF(x) = cr’1 for some constantc. This implies that when

f E for ~ > 3/2 (i.e. f o(~)) we have that u =~ + g whereMis a cons-

tant andg E ~ Understrongerassumptionsof f, it is possibleto give detailed
information on the form of the leadingtermsin u to higherorderin I /r.

Next considerthe casewheref = O(—), i.e. f may fail to beintegrable.Due to
r3

the fact that ker = coker = constants,the function — + Jo. is not in the

rangeof ~e : RT~ R T~2.We seethat : RT~ RT~2is an isomorphism.
Finally, we will considerthe equation

A
5u =f

for radially smoothg. As an example,let f be of the form

f1 f2
fr_ +— +1.o.

r
3 r4

Then, assumingthat g is sufficiently radially smooth,it is readily shown that u

will be of the form

lnr lIi lnr
u=a—+— +bY

1 +— +l.o,
r r r

2 r2

wherea and b areconstantsand Y
1 is a first orderharmonic.
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A.3. TheBasic PDO andTheir Properties

In this sectionwe will considerthe propertiesof the operatorst.~Kgand
actingbetweenspacesof radially smoothvectorfields.Since n = 3 is the caseof
interestin GR, wewill restrictour attentionto this.

For X E F(TM) andg C M, let KgX= L~g,let Lg denote the operator defined
by X-÷KgX— ~ tr(KgX)g and let ‘~gdenotethe divergencew.r.t.g, i.e. the formal

adjoint to Kg. Then we denote Kg : F(TM) — f(TM) by L~Kgand 5g 0 Lg
by L~Lg~The operatorsL~KgandL~Lgare the <<vector>> Laplacianswhich are of

importancein the studyof the action of the groupof diffeomorphismsandthe
groupof conformal transformations.

The propertiesof the operatorsL~iKg,‘~L,gand on asymptoticallyEudidean
manifoldshave beenstudiedby Christodoulouand 0-Murchadha[18]. The map-
ping propertiesof the operatorsacting in the category of Sobolevspacesand

weightedSobolevspaceshas beenstudiedpreviously,andfrom theseresultsit is
not hardto derivethe correspondingpropertiesfor the spaceRTJ~.

The equationswhich are most interestingin our applicationsare of the form

AKgX = &gh for h C TgM~T,i.e. &gh C RT~’.Lets ~ 2 andon JR3. let Ae

denoteone of the operators~K,e or ~L,e and let Ag denote L~iKgor ALg. The
followingresultis easilyprovedusingtechniquessimilar to thoseusedin [I, §2.4].

PROPOSITION A. Assumethat g C M~Tand let m, s be as in Definition 2.3.For
k C Z consider the mapping

Ag : RT~~1(TM) -+ RT~1
2(TM).

The followingstatementsare true.
I) If k = 1, thenAg is an injection with rangegiven byRT~’(TM).

2) if k = 0 thenA~: RT~
1(TM) -+ RT~’(TM)is an isomorphism.In the

general case,without the assumptionof odd leadingterms,we havethat Ag has
a kernel consistingof the asymptoticallyconstantvectorfieldsanda rangeRT~,J1
where the I indicates that similar to the scalar case, the 1 /r2-part consist of
X

2(0)/r
2 whereX

2 is orthogonalto the constants.If X C kerAg nRT~
41 then

x = + x
1,

where is constantand X(1) C 1 with ~ = e — 3/2 as in Definition 2.1.
3) If k = — I then Ag has kernel consistingof asymptotically I : St order

vectorfields:ifXEkerAg nRT.~
1then

X =X_
1+X~,

where X_1 is a first ordervectorfield in kerAe ~ RT~~jand X(Ø) CRT~~1,
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If g C C~,then in the abovecases,kerAg C C~. .

In the caseof /ILg~the form of the leadingterms of solutionsof LILgX = Y

canbe derivedfrom the parametrixfor which canbe found in [431.

AppendixB: The groupD(M) and the spaceM/D.

Let M = JR3. We will in this appendixconsiderthe group Ds+ ‘(M) of all
diffeomorphismsof M which leave the spaceM~T of asymptoticallyradially

smooth Riemannianmetrics with evenparity invariant. The main ideasare the
sameas in [I] and we concentratehere on the technicalpointsconnectedwith
the assumptionof radial smoothness.

The irst fact to note is that in general,for vectorfieldsX1 C 1 of the form

X~= c~lnr+ X~(0)+ 1.0.,

i.e. thelogarithmic translationsfirst notedto be ofimportanceinGRbyBergmann

[111, we have that Kg(X) CRT~.in particular,the term Ke(c’lnr) falls off like
I/r and has odd parity. Hence without the parity condition, D would contain
trasformationswith a logarithmic term. It hasbeennotedthat theoccurrenceof
such terms makes the definition of momentafor GR problematicand various
schemeshave been proposedto deal with this problem,see for example [5].

We seefrom the abovethat the parity condition on M excludesthelogaritmic
terms from D. The questionof importancein the study of momentafor GR is

the exact form of the leading terms of elementsin LieDlff. In this sectionwe
are concernedwith the spatialpart D of Diff~.To be ableto controlthebehaviour
of D, we use the propertiesof the operatorL~xg.Using PropositionA as in

[1, §2.4], we find that LieD is given by vectorfieldsof the form

X(x) = A(x) +

where A E e, the Lie algebra of the EuclideangroupE in JR3 and E R T~
0.

The vectorfieldsin RT~0whichdo notvanishat infinity werecalledsupertransla-

tions by Reggeand Teitelboimand are relatedto the supertranslationsoccurring
in the Spi theory [71 althoughhere the set of supertranslationsis much smaller.

PROPOSITION B. 1) Let Ds+ 1 denote the group of all diffeomorphismswhich

lear’e M~Tinvariant. Then

Ds+ 1 = Ds+ 1

whereDs+ 1 denotesthespaceofall diffeomorphismsi~suchthat 77—idERT~

2) ThegroupDS+ I containsno isometrics, a
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Part (2) of the above Propositionis a direct consequenceof PropositionA (2).

Remark. The group D andD are topologicalgroupsbut not Lie groups and the

actionof IYkt~andD~L~Oon M~eis continuousbutnot differentiable.Howe-
ver, the inverselimits as s -4 oo, denotedby D~°andD~are ILH Lie groupsand
the actions on M~are ILH actions. We will not discusstheseconceptsin detail

here,butreferthe readerto the original literature[36] and [12]. Seealso [27]. .

There is an importantdifference betweenthe structureof the group D using

the presentasymptoticconditionsand the structureof the correspondinggroup
with asymptoticconditionsdefinedin termsof weightedSobolevspaces.In the

casestudiedin [1], the group D is for n = 3 and valuesof & suitable for GR,of
the form D = D ‘SO, where 0 denotesthe rotation group in R3 andD denotesa
groupof diffeomorphismssuchthat roughly t~— id = r 112—e for some�> 0, i.e.
D containsthe translations.Further,as pointed out already by Bergmannfor

the caseof GR [11], it doesnotappearpossiblein this caseto selectouta distin-
guishedEucideansubgroup,andin the 4-dimensionalcasea distinguishedPoin-
care subgroup,which is of importancefor the definition of angular momenta.
This type of problem has been extensivelydiscussedin the literature, seefor

example[7].
Now we considerthe action of D on M. Oneof the goals of this paperis to

constructthequotientspacesC/Diff
1 and C/Diff~,whereC denotesthe constraint

setin the Hamiltonianformulation of GR. An importantstepin the construction
of C/Diff1 is the studyof the quotientspacesM/D andMID. This problem was
studied for the asymptotically Eucideancase in [1], usingweighted Sobolev
spaces.The analysisis similar for the caseof radially smoothmetrics satisfying
theparity condition.

We review the main conceptsinvolved in constructingthe quotientsM

and M~’/D°’in the rest of this section.For details in the H~case,the readeris
referredto [1]. Let A : D x M -÷ M denote the action (by pullback) of D on M.
To construct the quotient we need to prove

(1) That the orbits A(D, ‘y) are closedsubmanifoldsof M. This involvestwo

steps:
(1.1) Proof that the orbit is an immersedsubmanifold.

(1.2) Proof that theorbit is a closedsubsetof M.

(2) Constructionof a (local) slice for the action.Let 17 denotetheisotropy
group for 7 C M. A slice for the action of D or D is a submariifoldS C M such

that the followingholds:
(2.1) If r~EI7,thenA(r~,S)=S.
(2.2) 1f~ED:suchthatA(~,S)flS~Ø,then~CI7.
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(2.3) Thereexistsa local crosssectionx : D/17 -4 D defined in a neighborhood
U of the identity cosetsuchthat if F: U x S -÷M is defined by (u, t) —* A(~(u),t),
thenF is a homeomorphismontoa neighborhoodof ‘~‘.

The abovestepswerecarriedout in [1] for the1-J~case,andthegeneralization

to the presentasymptoticconditionsis straightforward.

Remark. The constructionof an ILH structurefor the quotientspacesM~°/D°~

and M~/D~hasnot been worked out in detail for the caseof noncompactM,

but should be straightforwardfollowing the work of Bourgignon[12]. The fol-

lowingis the final resultconcerningthestructureof the quotientspaces:

(1) The spaceMD = M~’/D” is a strong ILH variety with singularitiescor-
respondingto the metricsin M with isometries.

(2) The space MD = M°~/D~’is a strong ILH manifold (this reflects the fact
thatD doesnot containany isometriesfor metricsinM). Thereis a smoothaction
of the EucideangroupE on MD and the quotientMD/E = MD.
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